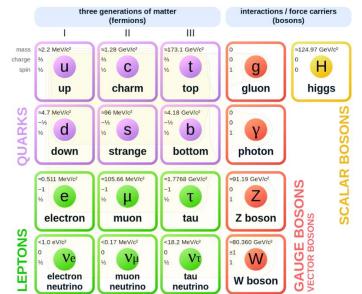
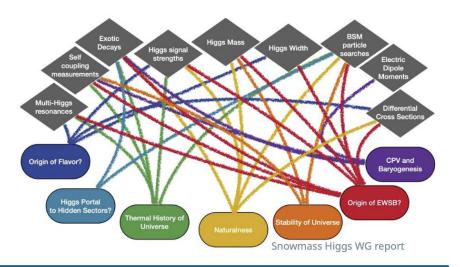


Higgs boson property measurements at the ATLAS experiment

M. Biglietti (INFN Roma Tre) on behalf of the ATLAS collaboration

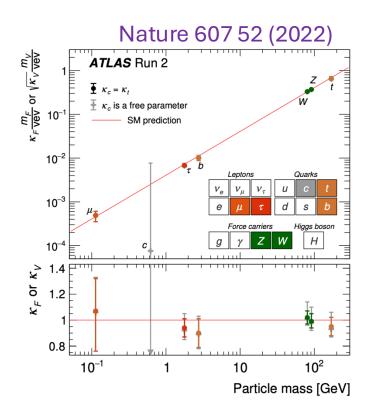



Introduction

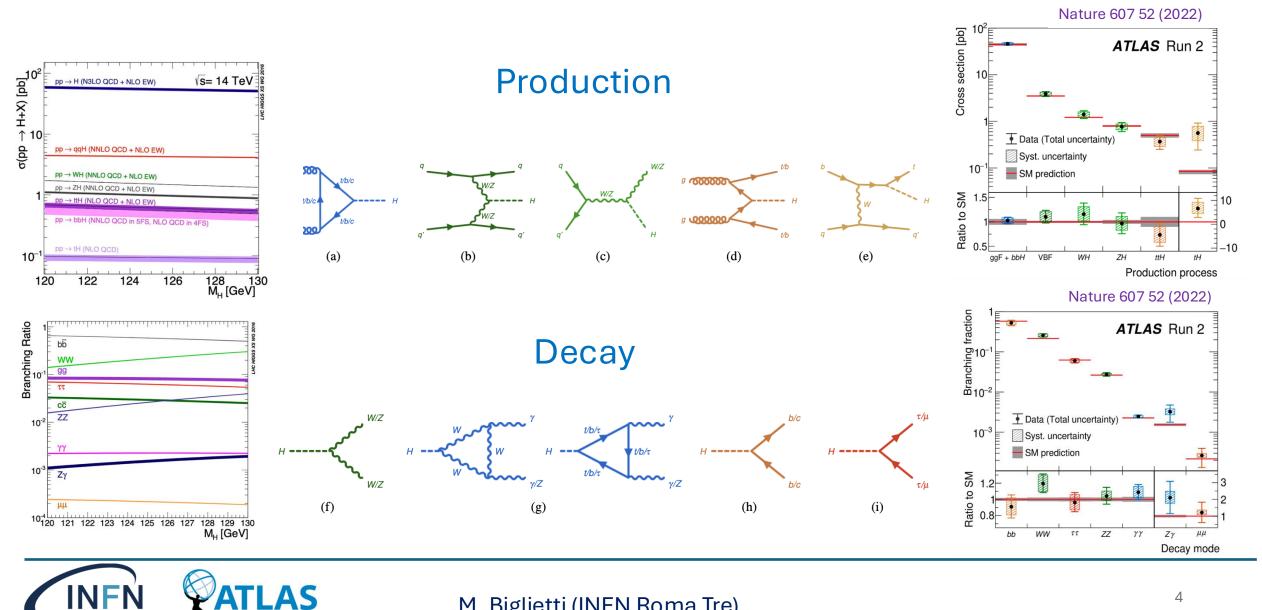
- The Standard Model (SM) is a well-established theory defining the elementary particle content and their interaction
 - Extremely successful! Predicts vast majority of observed phenomena
- The Higgs boson is at the heart of SM
 - Inked to many fundamental open questions of the nature
- The Higgs boson has a rich set of properties that can be verified experimentally -> powerful test of SM and constraint of BSM physics

BSM can alter the Higgs boson production and decay

Standard Model of Elementary Particles

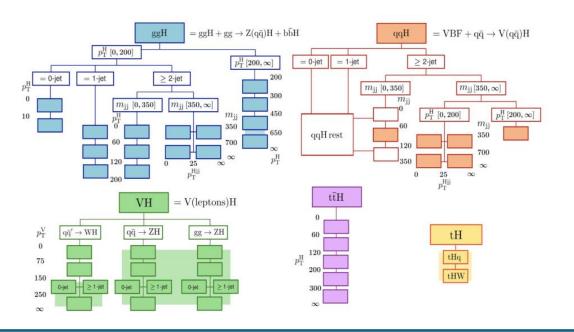


Run 2 Measurements


- Collected pp data corresponding to an integrated luminosity of 140 fb⁻¹
- Start of the precision measurements era and BSM searches!
- Major achievements in last years:
 - Observation of $H \rightarrow \tau \tau$ decay in 2016
 - Observation of H→bb decay using 2018 data
 - Observation of ttH production with different decay modes
 - Evidence for of $H \rightarrow \mu\mu$ decay
- this talk will present the recent results beyond them

Higgs boson production and decay

M. Biglietti (INFN Roma Tre)


EXPERIMENT

Higgs Boson Measurements

Simplified Template Cross Sections (STXS):

- split production phase space in multiple regions (bins) and measure the cross-section in each
 - optimized for SM and BSM sensitivity while reducing theory dependence
 - facilitate combinations in different decay channels

bins can be chosen/merged depending on statistics

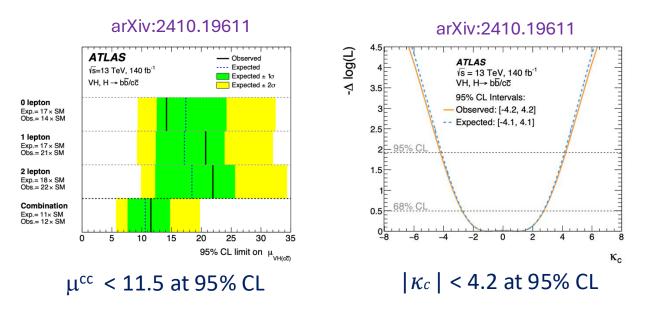
≻ K framework:

- event rates for Higgs production and decay processes can be expressed in terms of coupling modifiers (κ) multiplying the SM Higgs coupling strengths to other particles.
- kinematic distributions not altered

$$\sigma \cdot \mathcal{B} (i \to H \to f) = \kappa_i^2 \cdot \kappa_f^2 \cdot \sigma_i^{\text{SM}} \cdot \frac{\Gamma_f^{\text{SM}}}{\Gamma_H(\kappa_i^2, \kappa_f^2)}$$
$$\kappa_i^2 = \frac{\sigma_i}{\sigma_i^{\text{SM}}} \text{ and } \kappa_f^2 = \frac{\Gamma_f}{\Gamma_f^{\text{SM}}}$$

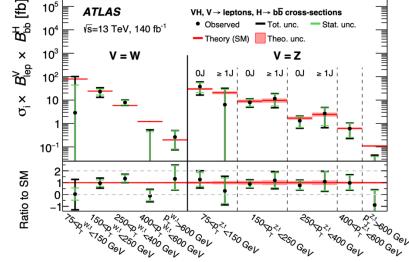
- In addition to :
 - inclusive measurements (cross sections, signal strenghts)
 - unfolded/fiducial/differential measurements

VH production, $H \rightarrow bb$ and $H \rightarrow cc$ decay


The individual production of WH and ZH with $H \rightarrow bb$ is established with observed (expected) significances of **5.3** (5.5) and **4.9** (5.6) respectively

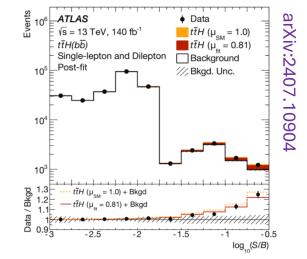
H→bb differential measurements (STXS) in 13 kinematical fiducial region!

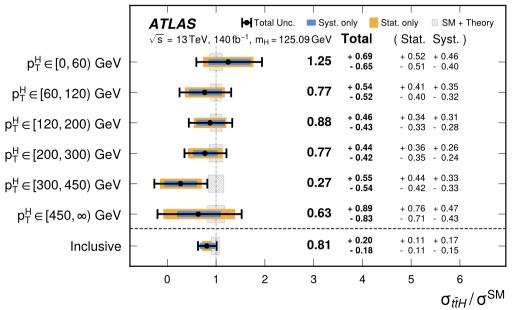
> VH. V \rightarrow leptons. H \rightarrow bb cross-sections Theory (SM) Theo. unc. V = Z ≥ 1 J ¦ 0J ≥ 1 J ¦ 0 J OJ


arXiv:2410.19611

The search for the $H \rightarrow c\bar{c}$ decay yields an observed (expected) upper limit of **11.5** (10.6) times the SM prediction at 95% CL

Improved RUN2 measurement : uncertainties improved by 15% for H $\rightarrow bb^{-}$ and ~3 for $H \rightarrow cc^{-}$ compared with the previous ATLAS results.


BONUS: $VZ, Z \rightarrow c\bar{c}$ process observed with a significance > 5σ

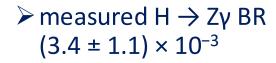

ttH production, $H \rightarrow bb$ decay

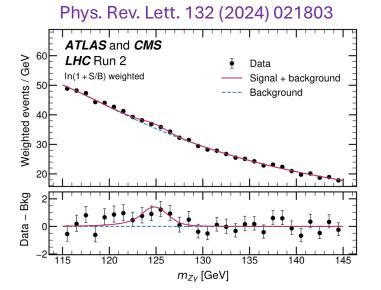
- > Test of the top Yukawa coupling
- > 1 or 2 lepton final states
- Improved Run2 measurement of a factor ~2 on the expected ttH significance compared to the previous result
- \succ improved *b*-jet identification \rightarrow 3X signal acceptance on the same dataset
- better modelling of tt+jets background and use of signal/bkg control regions based on multiclass neural network
- observed (expected) significance of 4.6 (5.4)
- \blacktriangleright cross secton 411 ± 54(stat.) +85 -75 fb in agreement with SM
 - dominated by the systematic uncertainties from the ttH signal modelling and from tt+ jets background modelling.
 - Overall uncertainty improved by factor 1.8
- up to date, most precise ttH cross-section measurement in a single decay channel, inclusively and in STXS

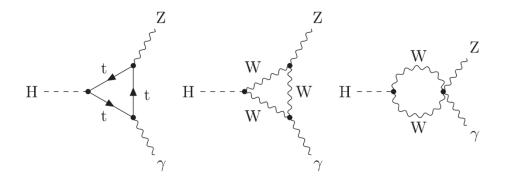
cross-section is also measured differentially in bins of the Higgs boson transverse momentum within STXS

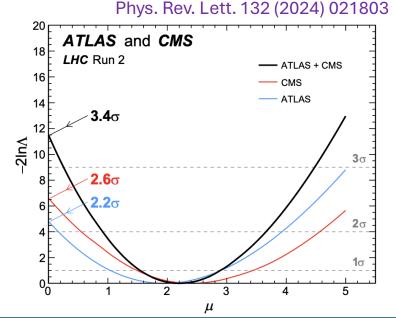
arXiv:2407.10904

Evidence of $H \rightarrow Z\gamma$ Rare Decay (ATLAS+CMS)

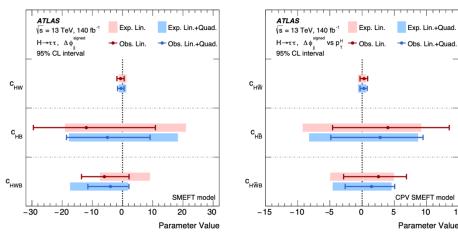

➢ SM branching ratio ~ 1.5 × 10^{−3}


 \succ occurs via loop diagrams \rightarrow sensitive to BSM physics


- > ATLAS+CMS combination gives 3.4 σ evidence
- $\geq \mu = 2.0^{+1.0}_{-0.9}$ (ATLAS) $\mu = 2.4^{+1.0}_{-0.9}$ (CMS),

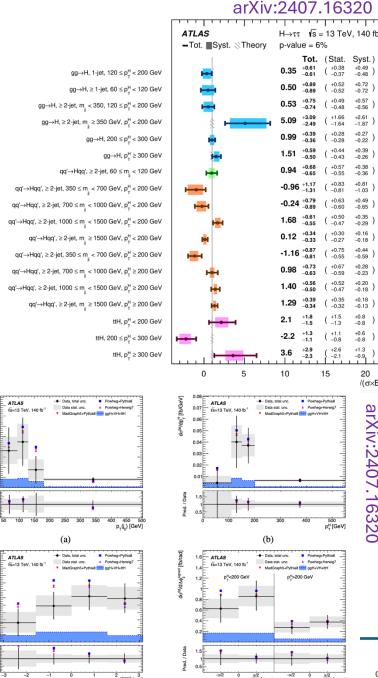

 \geq Combined μ = 2.2 ± 0.6(stat)^{+0.3}_{-0.2} (sys)

> expected: 1.0 ± 0.6(stat) ±0.2(sys)



$H \rightarrow \tau \tau$ Differential Measurements

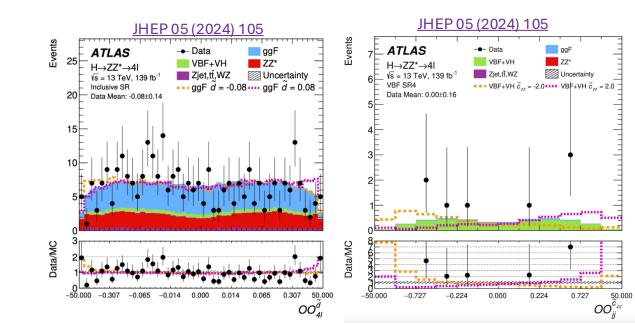
STXS and VBF fiducial unfolded differential measurement

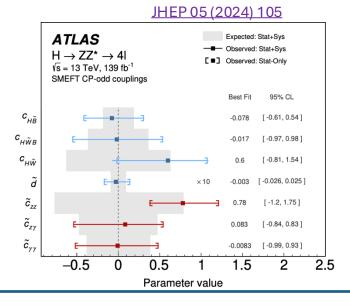

- \blacktriangleright first VBF measurement for the higher-pT criteria, and the most precise for the lower-*p*T criteria
- ▶ VBF enhanced differential fiducial measurements precision 25%–50%, in agreement with SM, and interpretation in the SMEFT framework
- CP: strongest constraints to date on the CP-odd Wilson coefficient C_{WH}~

INFN

arXiv:2407.16320

M. Biglietti (INFN Roma Tre)

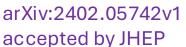


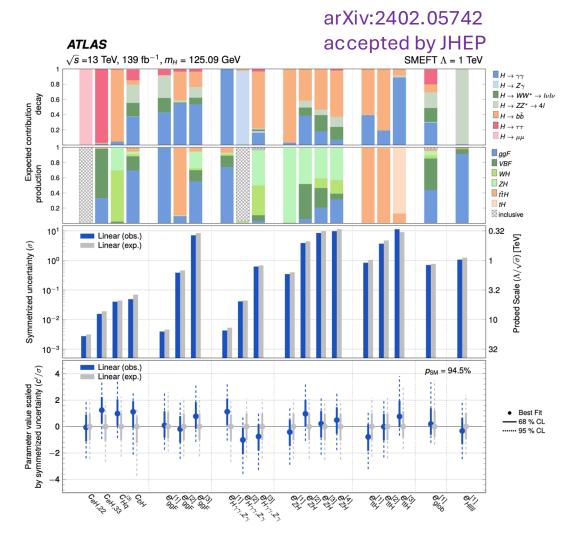

(c)

Tot. (Stat. Syst.) +0.38 +0.49 +0.52 +0.72 -0.52 -0.72 -0.48 -1.64 +0.28 +0.44 -0.43 +0.39 -0.26 +0.57 +0.81 +0.63 +0.49 -0.65 +0.50 -0.47 +0.35 -0.29 +0.61 +0.30 -0.27 +0.16 -0.18 -1.16 +0.87 -0.81 +0.75 -0.55 +0.44 -0.59 +0.67 +0.28 +0.73 -0.63 +0.52 +0.20 +0.18) +0.35 +1.5 -1.3 +0.8 (+1.1 -0.8 +0.6) +2.9 -2.3 +2.6 +1.3 -0.9. 15 20 /(σ×B)SM A Powhea+H arXiv:2407.16320 Powheq+Pythia pH>200 GeV (d)

$\mathsf{CP:} \mathsf{H} \to \mathsf{ZZ}^* \to \mathsf{4\ell}$

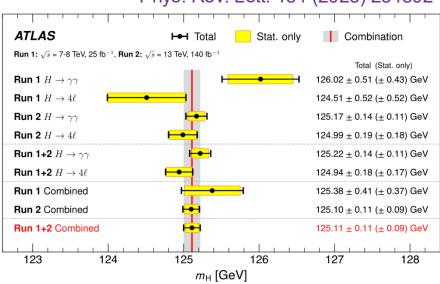
- Goal is to probe the coupling strength of CP-odd operators(CP-violation) in VBF production and 4l decay
 - 4 VBF signal regions based on output score of a NN discriminant
- SMEFT framework
- Build optimal observables (OO)
 - differential cross-section measurements
- Good agreement between data and SM expectation

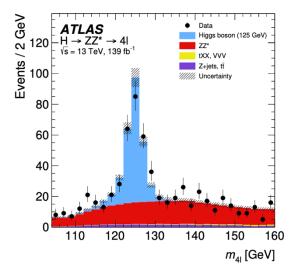

INFN SATLAS


Combined Interpretation in SMEFT

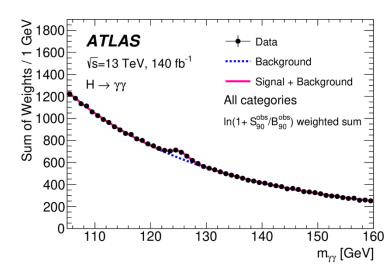
- Production, STXS and fiducial differential crosssections in different decay channels reparameterised in SMEFT operators
- constraints on linear combinations of dim-6 Wilson coefficients in the Warsaw basis
- no significant deviations from SM

INFN


Decay channel	Analysis Production mode	\mathcal{L} [fb ⁻¹]	Reference	Binning	SMEFT	2HDM and (h)MSSM
$H \rightarrow \gamma \gamma$	(ggF, VBF, WH, ZH, ttH, tH)	139	[25] [21]	STXS-1.2 differential	√ √(subset)	\checkmark
$H \rightarrow ZZ^*$	$(ZZ^* \rightarrow 4\ell: \text{ ggF}, \text{VBF}, WH + ZH, ttH + tH)$	139	[24] [20]	STXS-1.2 differential	√ √(subset)	\checkmark
	$(ZZ^* \rightarrow \ell\ell\nu\bar{\nu}/\ell\ell q\bar{q}: ttH \text{ multileptons})$	36.1	[36]	STXS-0*		\checkmark
$H \to \tau \tau$	(ggF, VBF, WH + ZH, ttH + tH)	139	[31]	STXS-1.2	\checkmark	\checkmark
	(ttH multileptons)	36.1	[36]	STXS-0*		\checkmark
$H \rightarrow WW^*$	(ggF, VBF)	139	[32]	STXS-1.2	\checkmark	\checkmark
	(WH, ZH)	36.1	[48]	STXS-0*		\checkmark
	(ttH multileptons)	36.1	[36]	STXS-0*		\checkmark
$H \rightarrow bb$	(WH, ZH)	139	[26, 27]	STXS-1.2	\checkmark	\checkmark
	(VBF)	126	[28]	STXS-1.2	\checkmark	\checkmark
	(ttH + tH)	139	[30]	STXS-1.2	\checkmark	\checkmark
	(boosted Higgs bosons: inclusive production)	139	[29]	STXS-1.2	\checkmark	\checkmark
$H \rightarrow Z\gamma$	(inclusive production)	139	[33]	STXS-0*	\checkmark	\checkmark
$H \rightarrow \mu \mu$	(ggF + ttH + tH, VBF + WH + ZH)	139	[34]	STXS-0*	\checkmark	\checkmark

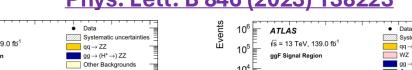

Higgs Boson Mass

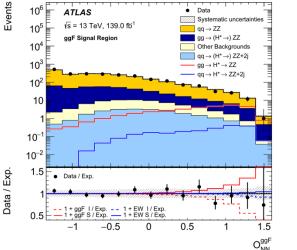
- Processes for mass measurements :
 - H→ZZ→4l, dominated from statistical uncertainties, clean final state
 - $H \rightarrow \gamma \gamma$, high statistics, uncertainty from photon energy calibration, reduced by a factor ~4
- precision on $m_H < 0.1\%$!



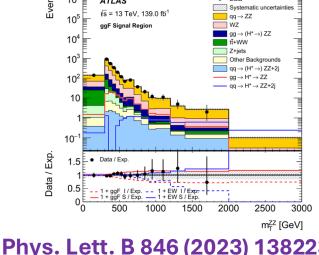
Phys. Rev. Lett. 131 (2023) 251802

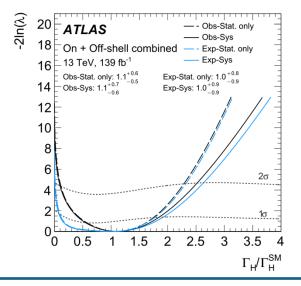
Phys Lett. B 843 (2023) 137880


Phys. Lett. B 847 (2023) 138315



Higgs Boson Width

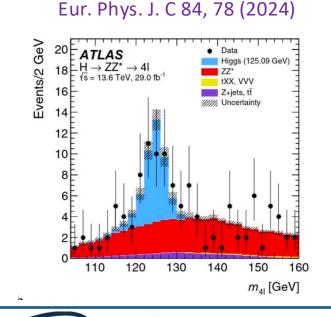

- SM prediction $\Gamma_{\rm H}$ = 4.1 MeV too small to be measured directly
- Measured from H→ZZ→4l on-shell/off-shell comparison
 - relies on on-shell/off-shell couplings being the same
- Off-shell analysis performed in 4l and 2l2v channels
 - use of Neural Network to enhance the analysis sensitivity in 4l channel


ATLAS

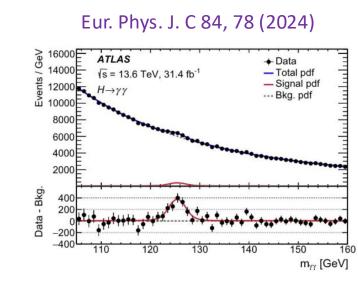
Phys. Lett. B 846 (2023) 138223

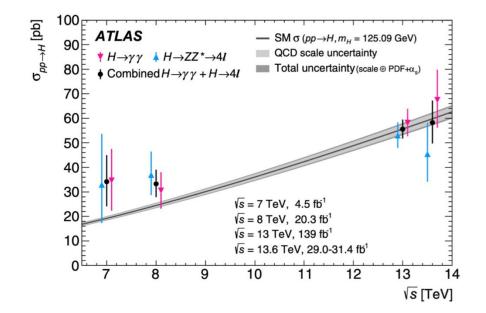
 $\sigma_{gg \to H \to ZZ}^{\text{on-shell}} \sim \frac{g_{ggF}^2 g_{HZZ}^2}{m_H \Gamma_H}$ $\sigma_{gg \to H \to ZZ}^{\text{off-shell}} \sim \frac{g_{ggF}^2 g_{HZZ}^2}{m_{ZZ}^2}$

$$\Gamma_{H} \propto \frac{\sigma_{gg \rightarrow H^{*} \rightarrow ZZ}}{\sigma_{gg \rightarrow H \rightarrow ZZ^{*}}}$$

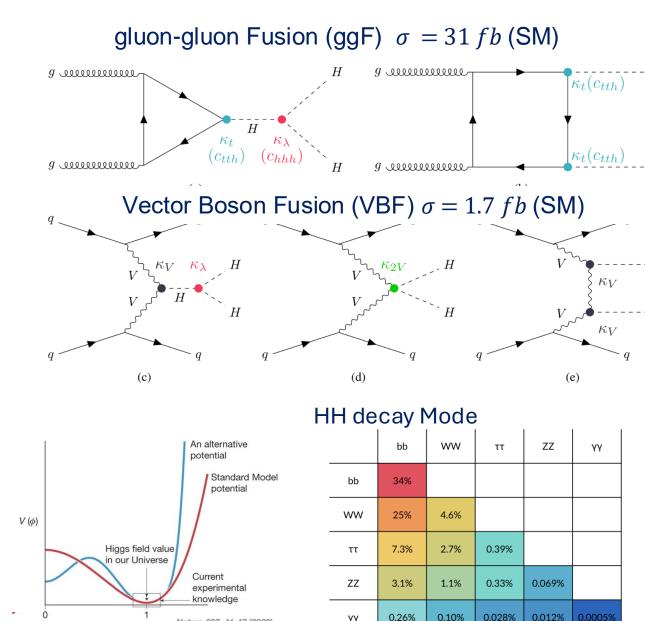


- $\Gamma_{\rm H} = 4.5^{+3.3}_{-2.5} \,{\rm MeV}$
 - Uncertainty from theoretical modelling of signal and backgrounds is the dominant systematic
- 3.3σ evidence of Higgs off-shell production



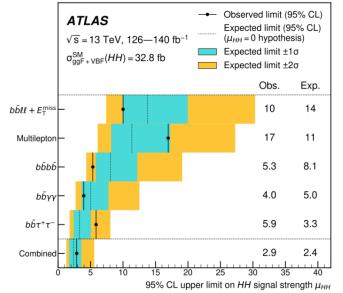

Run3 Measurements at 13.6 TeV

- $H \rightarrow \gamma \gamma$ and $H \rightarrow 4l$ channels
- can add to Run 1, Run 2 and show cross-section as a function of center of mass energy
- Good agreement with SM predictions!


INFN

HH production & decay

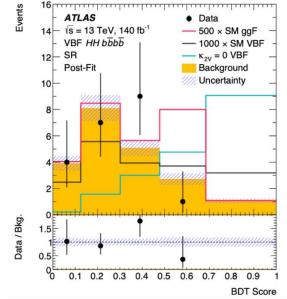
- HH production not yet observed experimentally
- measurement of the H boson self couplings
 - provides information on the shape of the Higgs potential
- HHH (k $_{\lambda}$) and VVHH (K $_{2V}$) couplings accessible via HH production
 - Kappa framework: parametrize the Higgs boson couplings as the ratio to the SM prediction

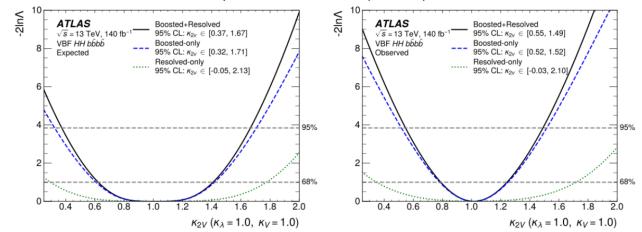

Nature 607, 41-47 (2022)

HH Combination

- Channels:
 - $HH \rightarrow bb\gamma\gamma$,
 - $HH \rightarrow bb\tau + \tau -$,
 - $HH \rightarrow bbbb$,
 - $HH \rightarrow 2b + 2\ell + ETmiss$,
 - *HH* → *Multilepton*
- μ_{HH} < 2.9 at 95% CL (2.4 expected assuming no Higgs boson pair production)
- $-1.2 < \kappa_{\lambda} < 7.2 @ 95\%$ CL
 - Expected: $-1.6 < \kappa_{\lambda} < 7.2$
- $0.6 < \kappa_{2V} < 1.5 @ 95\%$ CL
 - Expected: $0.4 < \kappa_{2V} < 1.6$

Phys. Rev. Lett. 133 (2024) 101801

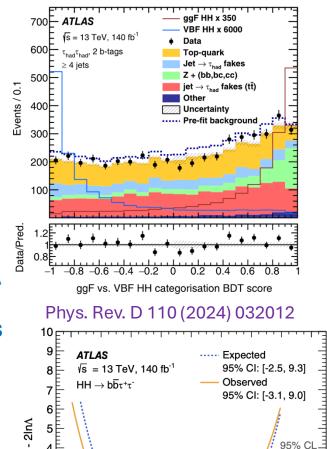

Phys. Rev. Lett. 133 (2024) 101801


HH→bbbb via VBF (boosted)

- VBF signature is an handle for bkg suppression
- Higgs candidates reconstructed as a single largeradius jet
- sensitive to the quartic coupling between two vector bosons and two Higgs \rightarrow strong sensitivity to k_{2V}
 - large boost when $k_{\rm 2V}$ deviates from SM
- combined with the resolved analysis [Phys. Rev. D 108 (2023) 052003]
 - *b*-quarks are reconstructed as small-*R* jets
- $0.55 < \kappa_{2V} < 1.49$ at the 95% CL
 - (expected: $0.37 < \kappa_{2V} < 1.67$)
- NULL value excluded with a significance of 3.8σ

Phys. Lett. B 858 (2024) 139007

Phys. Lett. B 858 (2024) 139007



HH→bbττ

- combines fully hadronic (dominant) and semi-leptonic decay channels
- BDT discriminant in each SR to discriminate ggF/VBF productions and background
 - optimized to enhance the sensitivity to $\kappa_{\!\lambda}$ and to VBF
 - improvement ~15% wrt previous analysis
- + μ_{HH} < 5.9 (3.3 expected) at 95% CL
- $-3.1 < \kappa_{\lambda} < 9.0$,
 - $-0.5 < \kappa_{2V} < 2.7$ at 95% CL

• expected : $-2.5 < \kappa_{\lambda} < 9.3$, $-0.2 < \kappa_{2V} < 2.4$

Phys. Rev. D 110 (2024) 032012

-2

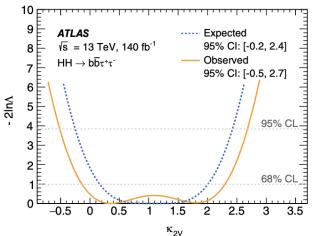
0

2

κ

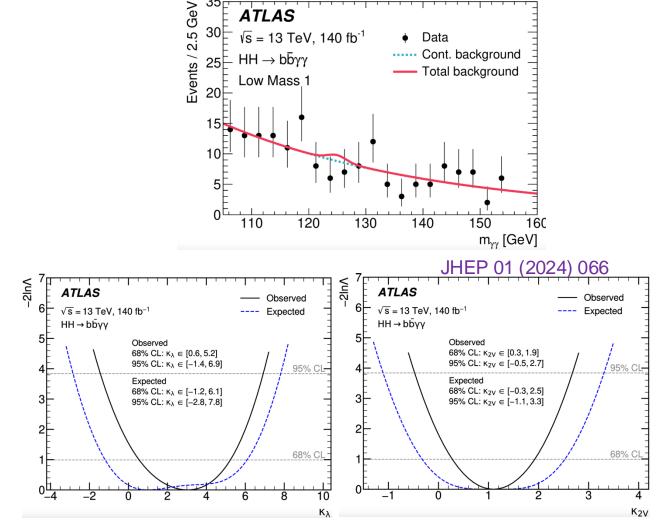
-4

68% CL


12

10

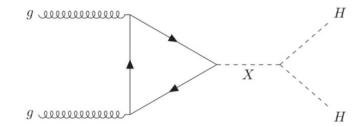
8

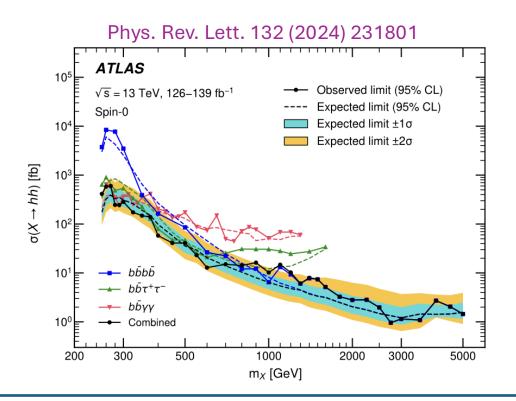

Phys. Rev. D 110 (2024) 032012 • Observed \circ Expected $\mu=0$ --- Expected $\mu=1$ ATLAS $\sqrt{s} = 13 \text{ TeV}, 140 \text{ fb}^{-1}$ $HH \rightarrow b\overline{b}\tau^{+}\tau^{-}$ Obs. (Exp.) $\tau_{lep}^{} au_{had}^{}$ LTT 23 (20) $\tau_{lep}^{}\tau_{had}^{}$ SLT 17 (7.2) $\tau_{had} \tau_{had}$ 3.4 (3.8) •0 5.9 (3.3) Combined 0 10² 10 95% CL upper limit on $\mu_{\mu\mu}$

Phys. Rev. D 110 (2024) 032012

$HH \rightarrow bb\gamma\gamma$

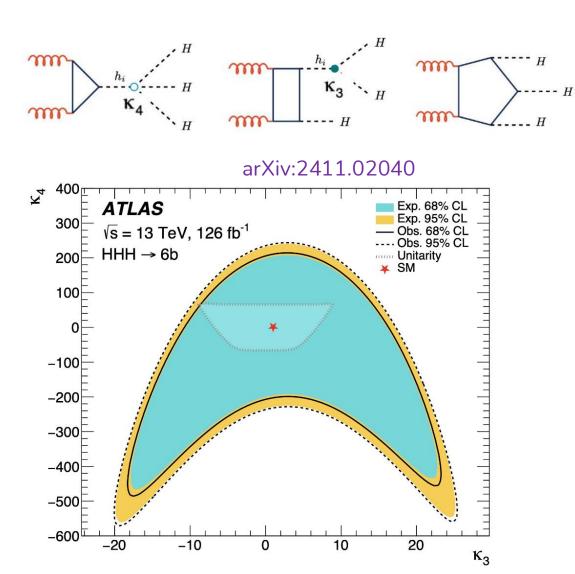
- Tiny branching ratio but very clean signature:
 - excellent $m_{\gamma\gamma}$ resolution
 - small backgrounds
- 7 event categories based on $m_{bb\gamma\gamma}$ and BDT classification
 - sensitivity increased by 6% (κ_{λ}) –17% (κ_{2V}) wrt previous analysis
- Fit $m_{\gamma\gamma}$ in each category
- μ_{HH} < 4.0 (5.0 expected) @ 95% CL
- observed: $-1.4 < \kappa_{\lambda} < 6.9 @ 95\%$ CL
 - expected: $-2.8 < \kappa_{\lambda} < 7.8$
- observed: $-0.5 < \kappa_{2V} < 2.7 @ 95\%$ CL
 - expected: $-1.1 < \kappa_{2V} < 3.3$

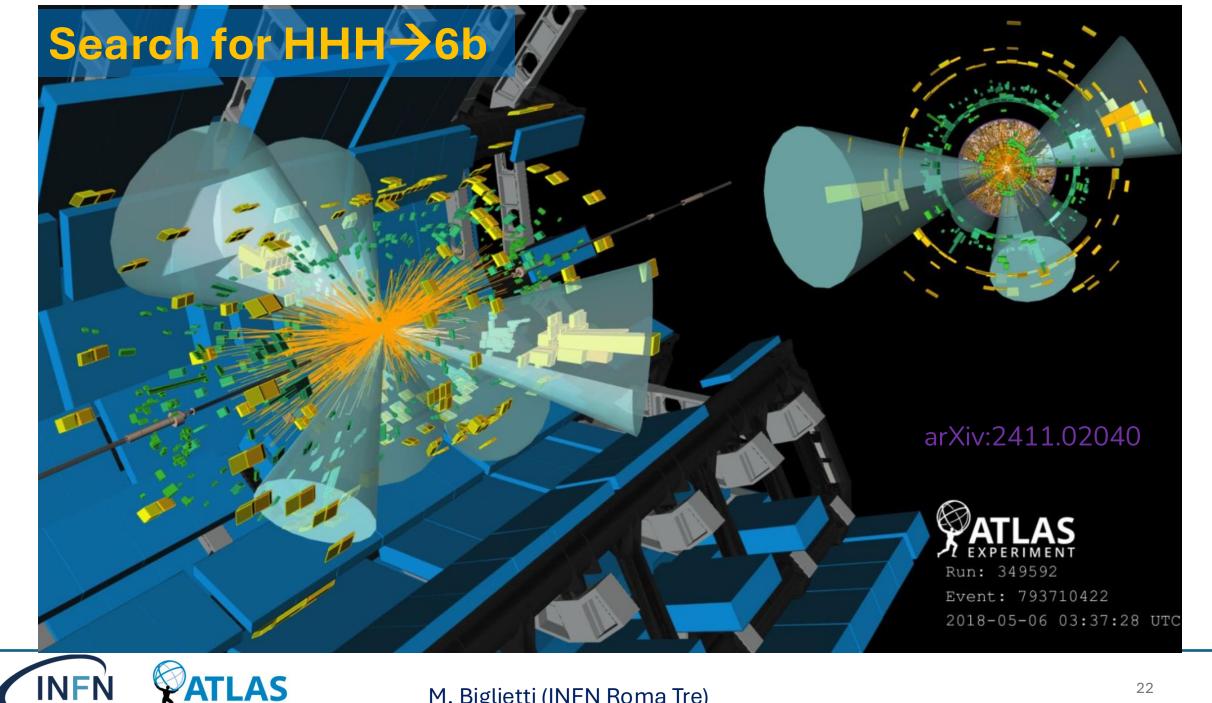



JHEP 01 (2024) 066

Resonant X → HH (Combination)

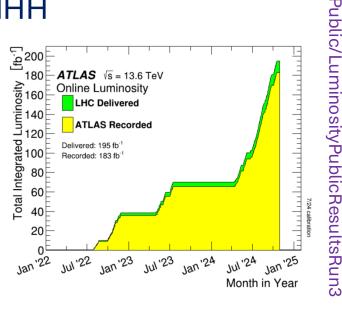
- Sensitive to BSM physics effects parametrised by resonance mass $m_{\rm X}$
- signal has a peak in $m_{\rm HH}$
- Combination of bbbb, $bb\tau\tau$, $bb\gamma\gamma$
- Obs. upper limits (0.96 600) fb
 - Improved by of a factor of 2-5 from partial Run-2 results (36 fb⁻¹)





Search for HHH \rightarrow 6b

- First LHC search for HHH production with 6b-quark final state
 - Very rare process, suppressed by a factor of ~ 400 compared to SM HH production
- Both resonant and non-resonant production:
 - Resonant: extended scalar sectors can produce cascade decays and appear in this channel first
 - Non-resonant: probe Higgs quartic coupling as well as cross section / signal strength
- No evidence of tri-Higgs production observed $\Rightarrow \sigma$ <59.4 fb at 95% CL (for SM kinematic shape)
 - SM prediction 0.08 fb
- Experimental constraints on quartic coupling κ_4 set for the first time



M. Biglietti (INFN Roma Tre)

EXPERIMENT

Conclusions

- The Higgs boson is a unique probe for seeking answers to fundamental questions about the universe
- The Higgs is a tool in the search for new physics: direct and indirect way
- Large set of measurements from ATLAS : from precision to HHH
- So far good agreement with SM prediction given current accuracy
- LHC delivered more data during Run 3 → improvements in sensitivity for all measurements

